行测数量:图形形式数字推理
我们知道,无论是何种形式的图形形式的数字推理,其考查的规律都是关于数字之间的运算关系,所以解题时分析也就围绕运算关系展开。而在图形形式数字推理中,由于数字较少,分析方法也就相对简单。国家公务员考试网(www.chinagwy.org)专家归纳了以下几个考虑的角度,结合例题予以说明。由于解题环境各不相同,普遍之中难免例外,还望考生自己多加琢磨,此处仅抛砖引玉。
一、分析四周数字之和与中心数字的大小关系
如果四周数字之和小于中心数字,则四周数字的运算过程很有可能涉及乘法运算,否则,就应该优先考虑减法或除法运算。这种分析虽然过程简单,但有利于确定大致的方向。
例题:
解析:此题答案为B。从前两个图形来看,四周数字之和远大于中心数字,这时需要将四周数字分组,优先考虑它们之间的减法或除法运算。第一个图形中有24、12、6,第二个图形中有8、8、16,这些数都为除法创造了条件。若在第一个图形中,24÷12;则在第二个图形中,8÷16,得到的是小数,由此否定这条路。即应该是24÷6,得到4,和中心数字6相差2,2可由12和10得到,此题便得到了解决。
第一个图形中,24÷6+12-10=6;第二个图形中,8÷8+16-9=8;第三个图形中,32÷8+20-12=(12)。
二、分析图形中最大的数
在数字推理中,几个数字运算得到另一个数字,通常都是几个较小的数运算得到一个较大的数。如果几个较小的数字运算得到一个远大于它们的数,则一定要通过乘法等使数字增大的运算。因此我们可以以图形中最大的数字作为突破口,寻找运算关系。
例题1:
A.11 B.16 C.18 D.19
解析:此题答案为D。图形中最大的数字是第三个图形中68,它由6、2、4三个数字运算得到,68远大于这三个数字的和,考虑乘法运算,三个数字的积是6×2×4=48,仍然小于68,由此确定应该考虑使数字变化更快的乘方运算。68附近的多次方是64,考虑到这些,这个题目就不难解决了。
三、分析图形中的质数
质数由于只能被1和它本身整除,它们在运算过程中,更多的时候,要涉及加法或减法运算,这是我们分析图形中质数的原因。
例题1:
解析:此题答案为B。前两个图形中的质数较多,在第一个图形中7、13等质数都大于中心数字6;在第二个图形中23、29都大于中心数字18;显然四周数字运算时,涉及到这些质数的倍数的可能性不大,这些质数更大可能是要进行加法、减法运算。
按照这种思路,不难确定此题规律。第一个图形中,(15-13)×(7-4)=6;第二个图形中,(8-5)×(29-23)=18;第三个图形中,(6-2)×(15-12)=(12)。
例题2:
解析:此题答案为A。第一个图形中有质数7,中心数字是15,它不是7的倍数,则7在运算过程中极有可能涉及加法或减法;第二个图形中,中心数字23是质数,它由3、5、8运算得到,运算过程中也极有可能涉及加法或减法。
此题三个数运算得到第四个数,这些简单的运算关系相信大家通过数列形式数字推理的学习,已经很熟悉了。第一个图形中,2×4+7=15;第二个图形中,3×5+8=23;第三个图形中,6×4+2=(26)。
行测更多解题思路和解题技巧,可参看 《2013年国家公务员考试一本通》、2013年公务员考试技巧手册。