指导
2015国家公务员考试行测指导:不定方程解法
http://www.chinagwy.org 2014-10-24 08:49 来源:国家公务员考试网
在行政能力测试数量关系中,以不定方程的形式出现的题目越来越频繁,如果掌握了不定方程的方法,这类题目相对来说是比较容易的。
一、定义
不定方程指的是未知数的个数大于方程的个数,且未知数受到某些限制(如要求是整数、质数等)的方程或方程组。
二、形式
二元不定方程:ax+by=c;多元不定方程组。
三、方法
二元不定方程:数字特性思想中的整数倍数、奇偶特性和尾数法。
多元不定方程组:整体消去法、特值代入法。
【例1】某汽车厂商生产甲、乙、丙三种车型,其中乙型产量的3倍与丙型产量的6倍之和等于甲型产量的4倍,甲型产量与乙型产量的2部之和等于丙型产量7倍。则甲、乙、丙三型产量之比为:( )?
A. 5∶4∶3 B. 4∶3∶2C. 4∶2∶1 D. 3∶2∶1
【解析】由题意可知,3乙+6丙=4甲,发现左边都包含3这个因子,那么可以得出甲应为3的倍数。,观察选项只有D项满足。这里用到了数字特性的思想。
【例2】超市将99个苹果装进两种包装盒,大包装盒每个装12个苹果,小包装盒每个装5个苹果,共用了十多个盒子刚好装完。问两种包装盒相差多少个?( )
A.3B.4 C.7 D.13
【解析】设大盒有x个,小盒有y个,则12x+5y=99,从奇偶特性入手,12x为偶数,99为奇数,所以5y一定是奇数。5y的尾数是0或5,那么只有尾数为5时5y是奇数。5y的尾数为5,那么12x的尾数必须为4才能相加得到9。这样知道这些条件,可以假设x=2,y=15。因此y-x=13。
【例3】小刚买了 3支钢笔、1个笔记本、2瓶墨水,花去35元钱,小强在同一家店买同样的5支钢笔、1个笔记本、3瓶墨水共花去52元钱,则买1支钢笔、1个笔记本、1瓶墨水共需要多少元?
A.9 B.12 C.15 D.18
【解析】解法一:整体消去法。假设甲、乙、丙三种货物的单价分别为A、B、C,则根据题意,得
3A+B+2C=35 (1)
5A+B+3C=52 (2)
以上两式(1)*2-(2)可得 A+B+C=18元。
解法二:特值代入法。将A赋值为0,转化成二元一次方程组
B+2C=35 B=1
B+3C=52—— C=17
那么A+B+C=0+1+17=18.
一、定义
不定方程指的是未知数的个数大于方程的个数,且未知数受到某些限制(如要求是整数、质数等)的方程或方程组。
二、形式
二元不定方程:ax+by=c;多元不定方程组。
三、方法
二元不定方程:数字特性思想中的整数倍数、奇偶特性和尾数法。
多元不定方程组:整体消去法、特值代入法。
【例1】某汽车厂商生产甲、乙、丙三种车型,其中乙型产量的3倍与丙型产量的6倍之和等于甲型产量的4倍,甲型产量与乙型产量的2部之和等于丙型产量7倍。则甲、乙、丙三型产量之比为:( )?
A. 5∶4∶3 B. 4∶3∶2C. 4∶2∶1 D. 3∶2∶1
【解析】由题意可知,3乙+6丙=4甲,发现左边都包含3这个因子,那么可以得出甲应为3的倍数。,观察选项只有D项满足。这里用到了数字特性的思想。
【例2】超市将99个苹果装进两种包装盒,大包装盒每个装12个苹果,小包装盒每个装5个苹果,共用了十多个盒子刚好装完。问两种包装盒相差多少个?( )
A.3B.4 C.7 D.13
【解析】设大盒有x个,小盒有y个,则12x+5y=99,从奇偶特性入手,12x为偶数,99为奇数,所以5y一定是奇数。5y的尾数是0或5,那么只有尾数为5时5y是奇数。5y的尾数为5,那么12x的尾数必须为4才能相加得到9。这样知道这些条件,可以假设x=2,y=15。因此y-x=13。
【例3】小刚买了 3支钢笔、1个笔记本、2瓶墨水,花去35元钱,小强在同一家店买同样的5支钢笔、1个笔记本、3瓶墨水共花去52元钱,则买1支钢笔、1个笔记本、1瓶墨水共需要多少元?
A.9 B.12 C.15 D.18
【解析】解法一:整体消去法。假设甲、乙、丙三种货物的单价分别为A、B、C,则根据题意,得
3A+B+2C=35 (1)
5A+B+3C=52 (2)
以上两式(1)*2-(2)可得 A+B+C=18元。
解法二:特值代入法。将A赋值为0,转化成二元一次方程组
B+2C=35 B=1
B+3C=52—— C=17
那么A+B+C=0+1+17=18.
以上就是不定方程问题常考的题型及对应题型所用的方法。希望广大考生可以有所借鉴。
行测更多解题思路和解题技巧,可参看2015年公务员考试技巧手册。